
CHAPTER 3 
LINEAR STRESS-STRAIN- 
TEMPERATURE RELATIONS 

I 
I n  Chapter 2, we presented separate theories for stress and strain. These theo- 

ries are based on the concept of a general continuum. Consequently, they are applicable to 
all continua. In particular, the theory of stress is based solely on the concept of force and 
the associated concept of force per unit area. Similarly, the theory of strain is based on 
geometrical concepts of infinitesimal line extensions and rotations between two infinitesi- 
mal lines. However, to relate the stress at a point in a material to the corresponding strain 
at that point, knowledge of material properties is required. These properties enter into the 
stress-strain-temperature relations as material coefficients. The theoretical basis for these 
relations is the first law of thermodynamics, but the material properties themselves must 
be determined experimentally. 

In this chapter, we employ the first law of thermodynamics to derive linear stress- 
strain-temperature relations. In addition, certain concepts, such as complementary strain 
energy, that have application to nonlinear problems are introduced. These relations and 
concepts are utilized in many applications presented in subsequent chapters of this book. 

3.1 FIRST LAW OF THERMODYNAMICS, 
INTERNAL-ENERGY DENSITY, AND 
COMPLEMENTARY INTERNAL-ENERGY DENSITY 

The derivation of load-stress and load-deflection relations requires stress-strain relations 
that relate the components of the strain tensor to components of the stress tensor. The form 
of the stress-strain relations depends on material behavior. In this book, we treat mainly 
materials that are isotropic; that is, at any point they have the same properties in all direc- 
tions. Stress-strain relations for linearly elastic isotropic materials are well known and are 
presented in Section 3.4. 

Stress-strain relations may be derived with the first law of thermodynamics, a pre- 
cise statement of the law of conservation of energy. The total amount of internal energy in 
a system is generally indeterminate. Hence, only changes of internal energy are measur- 
able. If electromagnetic effects are disregarded, this law is described as follows: 

The work performed on a mechanical system by external forces plus the heat 
that flaws into the system from the outside equals the increase in internal energy 
plus the increase in kinetic energy. 
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Symbolically, the first law of thermodynamics is expressed by the equation 

6 W + 6 H = 6 U + 6 K  (3.1) 

where 6W is the work performed on the system by external forces, 6H is the heat that 
flows into the system, 6U is the increase in internal energy, and 6K is the increase in 
kinetic energy. 

To apply the first law of thermodynamics, we consider a loaded member in equilibrium. 
The deflections are assumed to be known. They are specified by known displacement compo- 
nents (u, v, w) for each point in the deflected member. We allow each point to undergo infinites- 
imal increments (variations) in the displacement components (u, v, w) indicated by (6, &, 
6w). The stress components at every point of the member are considered to be unchanged 
under variations of the displacements. These displacement variations are arbitrary, except that 
two or more particles cannot occupy the same point in space, nor can a single particle occupy 
more than one position (the member does not tear). In addition, displacements of certain points 
in the member may be specified (e.g., at a fixed support); such specified displacements are 
referred to as forced boundary conditions (Langhaar, 1989). By Eq. 2.81, the variations of the 
strain components resulting from variations (6, &, 6w) are 

d6U 1 a(&) + d(6u) 

1 a( 6 w )  + a( 6v) 

6€ =-, 66 = - -  

S E  = -, 6€ = -  - 
xx dX xy 2 [ dx -I dy 
yy  & y z  2 [ dy -1 a2 

d6V 
(3.2) 

1 a( 6 w )  + a( 6u) -1 [ d Z  
, = - - - d6W 

S E Z Z  - 2 ax 

To introduce force quantities, consider an arbitrary volume V of the deformed mem- 
ber enclosed by a closed surface S. We assume that the member is in static equilibrium fol- 
lowing the displacement variations (6u, &, 6w). Therefore, the part of the member 
considered in volume V is in equilibrium under the action of surface forces (represented by 
stress distributions on surface S) and body forces (represented by distributions of body 
forces per unit volume B,, By, and B, in volume V). 

For adiabatic conditions (no net heat flow into V 6H = 0) and static equilibrium (6K= 0), 
the first law of thermodynamics states that, during the displacement variations (6, &, &), the 
variation in work of the external forces 6W is equal to the variation of internal energy 6U for 
each volume element. Hence, for r! we have 

6W= 6U (3.la) 

It is convenient to divide 6W into two parts: the work of the surface forces 6Ws and the 
work of the body forces 6Wp At point P of surface S, consider an increment of area dS. 
The stress vector up acting on dS has components opx, opy, and opz defined by Eqs. 2.10. 
The surface force is equal to the product of these stress components and dS. The work 
is equal to the sum of the work of these forces over the surface S. Thus, 
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For a volume element dV in volume V,  the body forces are given by products of dV and the 
body force components per unit volume (Bx, By, Bz). The work mnJ, of the body forces 
that act throughout V is 

The variation of work c%V of the external forces that act on volume V with surface S 
and SWB. The surface integral in Eq. 3.3 may be converted into is equal to the sum of 

a volume integral by use of the divergence theorem (Boresi and Chong, 2000). Thus, 

m = ms + 6wB = j [ - (Gxx6U d + axy6v + ox,6w) 
d X  

V 

+ -(a d 6u + oyy6v + OYZ6W) 
dr yx 

+ - (ozx6u d + OZY6V + 0 , , 6 W )  
dZ 

+ Bx6u +By& + B,6w]dv I 
With Eqs. 3.2 and 2.45, Eq. 3.5 reduces to 

(3.5) 

The internal energy U for volume V is expressed in terms of the internal energy per 
unit volume, that is, in terms of the internal-energy density UO. Thus, 

u = j u o d v  

6U = j 6 U o  dV (3.7) 

V 

and the variation of internal energy becomes 

V 

Substitution of Eqs. 3.6 and 3.7 into Eq. 3.la gives the variation of the internal-energy 
density 6Uo in terms of the stress components and the variation in strain components. 
Thus, 

(3.8) 

This equation is used later in the derivation of expressions that relate the stress compo- 
nents to the strain-energy density UO (see Eqs. 3.11). 

6U0 = 0, + oyy 6EYY + ozz + 2Oq 6Eq + 2OX2 6Exz  + 2oy2 6 E y z  

3.1.1 Elasticity and Internal-Energy Density 

The strain-energy density Uo is a function of certain variables; we need to determine these 
variables. For elastic material behavior, the total internal energy U in a loaded member is 
equal to the potential energy of the internal forces (called the elastic strain energy). Each 
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stress component is related to the strain components; therefore, the internal-energy density 
UO at a given point in the member can be expressed in terms of the six components of the 
strain tensor. If the material is nonhomogeneous (has different properties at different 
points in the member), the function UO depends on location (x, y, z) in the member as well. 
The strain-energy density UO also depends on the temperature T (see Section 3.4). 

Since the strain-energy density function UO generally depends on the strain compo- 
nents, the coordinates, and the temperature, we may express it as function of these vari- 
ables. Thus, 

uo = uo (en, eYy, ezZ, eq9 exZ, cYzt X, Y, Z, T )  (3.9) 

Then, if the displacements (u, v, w) undergo a variation (au, &, &), the strain com- 
ponents take variations 6en, 6eYy, a ~ ~ ~ ,  a ~ ~ ,  a ~ ~ ~ ,  and a ~ ~ ~ ,  and the function U, takes on 
the variation 

dU 6Uo = duo 6exn + duo + duo + duo + duo + 2 SeYz (3.10) 
J E X X  d f y  yy  d E z z  d E x y  d f z  d'yz 

Therefore, since Eqs. 3.8 and 3.10 are valid for arbitrary variations (au, &, &), compari- 
son yields for rectangular coordinate axes (x,  y, z) 

1 duo 1 duo 
JExy J E X Z  y z  2dEy,, 

, 0 = - -  , oxz = -- - 1 duo oxy - - - 
(3.11) 

3.1.2 Elasticity and Complementary Internal-Energy 
Density 

In many members of engineering structures, there may be one dominant component of the 
stress tensor; call it o. This situation may arise in axially loaded members, simple col- 
umns, beams, or torsional members. Then the strain-energy density Uo (Eq. 3.9) depends 
mainly on the associated strain component E; consequently, for a given temperature T, o 
depends mainly on E. 

By Eq. 3.1 1, o = dUo/dE and, therefore, U, = ode.  It follows that UO is represented 
by the area under the stress-strain diagram (Figure 3.1). The rectangular area (0, 0), (0, E ) ,  

(0, E), ( 4 0 )  is represented by the product CTE. Hence, this area is given by 

oE=Uo+Co (3.12) 
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FIGURE 3.1 Strain-energy 
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where Co is called the complementary internal-energy density or complementary strain- 
energy density. CO is represented by the area above the stress-strain curve and below the 
horizontal line from (0, 0) to (0, E) .  Hence, by Figure 3.1, 

Co = I E d o  (3.13) 

or 

€ = -  dC0 (3.14) 
d o  

This graphical interpretation of the complementary strain energy is applicable only for 
the case of a single nonzero component of stress. However, it can be generalized for several 
nonzero components of stress as follows. We assume that Eqs. 3.11 may be integrated to obtain 
the strain components as functions of the stress components. Thus, we obtain 

(3.15) 

wherefl,f2, ..., f 6  denote functions of the stress components. Substitution of Eqs. 3.15 
into Eqs. 3.9 yields UO as a function of the six stress components. Then direct extension of 
Eq. 3.12 yields 

co = - u, + O,E, + oyyEYy  + ozzEzz  + 2oxr€xr + 2oxzExZ + 2oyz€yz (3.16) 

By Eqs. 3.15 and 3.16, the complementary energy density Co may be expressed in terms 
of the six stress components. Hence, differentiating Eq. 3.16 with respect to o,, noting by 
the chain rule of differentiation that 

and employing Eq. 3.1 1, we find 

(3.17) 

(3.18) 

Similarly, taking derivatives of Eq. 3.16 with respect to the other stress components (o,,, 
ozz, oq, ox,, o,,), we obtain the generalization of Eq. 3.14: 

- dC0 JCO - JCO 
do,, yy do,, do,, 

, Ezz  - - E x , - - ,  E =- 

(3.19) 
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Because of their relationship to Eqs. 3.1 1, Eqs. 3.19 are said to be conjugate to Eqs. 
3.11. Equations 3.19 are known also as the Legendre transform of Eqs. 3.11 (Boresi and 
Chong, 2000). 

3.2 HOOKE’S LAW ANISOTROPIC ELASTICITY 

In the one-dimensional case, for a linear elastic material the stress CJ is proportional to the 
strain E; that is, CJ= EE, where the proportionality factor E is called the modulus of elasticity. 
The modulus of elasticity is a property of the material. Thus, for the one-dimensional case, 
only one material property is required to relate stress and strain for linear elastic behavior. 
The relation CJ= EE is known as Hooke’s law. More generally, in the three-dimensional case, 
Hooke’s law asserts that each of the stress components is a linear function of the components 
of the strain tensor; that is (with yq, yxz, yyz; see Eq. 2.73), 

(3.20) 

where the 36 coefficients, C l l ,  ..., c66, are called elastic coefficients. Materials that 
exhibit such stress-strain relations involving a number of independent elastic coefficients 
are said to be anisotropic. (See also Section 3.5.) 

In reality, Eq. 3.20 is not a law but merely an assumption that is reasonably accurate 
for many materials subjected to small strains. For a given temperature, time, and location 
in the body, the coefficients Cii are constants that are characteristics of the material. 

Equations 3.1 1 and 3.20 yield 

Hence, the appropriate differentiations of Eqs. 3.21 yield 

d2U0 

JExx d f y  
= c,, = c2, 

(3.21) 

(3.22) 
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These equations show that the elastic coefficients CQ = Cjj are symmetrical in the sub- 
scripts i,j. Therefore, there are only 21 distinct C's. In other words, the general anisotropic 
linear elastic material has 21 elastic coefficients. In view of the preceding relation, the 
strain-energy density of a general anisotropic material is (by integration of Eqs. 3.21; see 
Boresi and Chong, 2000) 

1 1 1 
2c13ExxE~z 2c23EyyEzz "' -C36EzzYyz 2 

(3.23) 

3.3 HOOKE'S LAW ISOTROPIC ELASTICITY 

3.3.1 Isotropic and Homogeneous Materials 

If the constituents of the material of a solid member are distributed sufficiently randomly, 
any part of the member will display essentially the same material properties in all direc- 
tions. If a solid member is composed of such randomly oriented constituents, it is said to 
be isotropic. Accordingly, if a material is isotropic, its physical properties at a point are 
invariant under a rotation of axes. A material is said to be elastically isotropic if its charac- 
teristic elastic coefficients are invariant under any rotation of coordinates. 

If the material properties are identical for every point in a member, the member is 
said to be homogeneous. In other words, homogeneity implies that the physical properties 
of a member are invariant under a translation. Alternatively, a member whose material 
properties change from point to point is said to be nonhomogeneous. 

If an elastic member is composed of isotropic materials, the strain-energy density 
depends only on the principal strains, since for isotropic materials the elastic coefficients 
are invariant under arbitrary rotations (see Eq. 3.25). 

3.3.2 Strain-Energy Density of Isotropic Elastic 
Materials 

The strain-energy density of an elastic isotropic material depends only on the principal 
strains (el, e2, e3). Accordingly, if the elasticity is linear, Eq. 3.23 yields 

By symmetry, the naming of the principal axes is arbitrary. Hence, Cll = C22 = 
C33 = C1, and C12 = C23 = C13 = C2. Consequently, Eq. 3.24 contains only two distinct 
coefficients. For linear elastic isotropic materials, the strain-energy density may be 
expressed in the form 



86 CHAPTER 3 LINEAR STRESSSTRAIN-TEMPERATURE RELATIONS 

U - + e2 + E,Y + G (e: + e2 + E 
O - 2  

(3.25) 

where A = C2 and G = (C, - C2)/2 are elastic coefficients called LamC’s elastic coeffi- 
cients. If the material is homogeneous and temperature is constant everywhere, A and G 
are constants at all points. In terms of the strain invariants (see Eq. 2.78), Eq. 3.25 may be 
written in the following form: 

U o  = (iA+G)T;-2Gf2 (3.26) 

Returning to orthogonal curvilinear coordinates (x, y, z) and introducing the general defi- 
nitions of and 7, from Eq. 2.78, we obtain 

’) (3.27) 
O - 2  

where ( E ~ ,  eYy, eZz, eXy, E,,, eYz) are strain components relative to orthogonal coordinates 
(x, y ,  z); see Eqs. 2.84. Equations 3.1 1 and 3.27 now yield Hooke’s law for a linear elastic 
isotropic material in the form (for orthogonal curvilinear coordinates x, y, z) 

(3.28) 

where e = E= + eYy + E,, = 7, is the classical small-displacement volumetric strain (also 
called cubical strain; see Boresi and Chong, 2000). Thus, we have shown that for isotropic 
linear elastic materials, the stress-strain relations involve only two elastic constants. An 
analytic proof of the fact that no further reduction is possible on a theoretical basis can be 
constructed (Jeffreys, 1957). 

oxx = Ae + ~GE,,, 
dxY = ~GE,,, 0,. = ~GE,,, = 2Gey, 

oyy = Ae + ~GE,,, ozz = Ae + ~ G E , ,  

By means of Eqs. 3.28, we find (with Eqs. 2.21 and 2.78) 

I ,  = ( 3 ~ . + 2 ~ ) i ~  

I, = 4x1 + 4 ~ ) i :  + 4 ~ ~ i ,  

2- - I ,  = A2(d+ 2G)f i  + 4AG I , I  2 + 8G3i3 

which relate the stress invariants 11, I,, I3 to the strain invariants TI, 72,73. 
Inverting Eqs. 3.28, we obtain 

1 

1 

ex, = E( ox, - voyy - vozz) 

E = -(d - voxx- vozz) 

1 
EZZ = -(ozz- voxx- V d  ) E YY 

YY E YY 

(3.29) 

(3.30) 
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where 

, v =  a (3.31a) 
A+G 2 ( a + G )  

are elastic coefficients called Young’s modulus and Poisson’s ratio, respectively. Also, 
inverting Eqs. 3.31a, we obtain the Lam6 coefficients A and G in terms of E and v as (see 
also Example 3.2) 

G = -  E (3.31b) 

G(3A + 2G) E =  

- 3 VK - -  VE A =  
( 1 + v)( 1 - 2v) 1 + v’ 2(1+ v) 

where 

E 
3 ( 1 - 2 ~ )  

K =  (3.31~) 

is the bulk modulus. The bulk modulus relates the mean stress om = 11/3 to the volumetric 
strain e by om = Ke. 

Alternatively, Eqs. 3.28 may be written in terms of E and v as follows: 

For the case of plane stress, o,, = ox, = oyz = 0, Eqs. 3.32 reduce to 

- E 
OXY - -€ 

l+VXY 

For the case of plane strain, E , ~  = ex, = eY’ = 0, Eqs. 3.32 reduce to 

[( 1 - V b X X  + VEyy1 

[VEXX+ (1 - V)EyyI - (1 + v)( l -2v)  

(1 + v)( l -2v)  OXX = 

- E 

(3.32) 

(3.32a) 

(3.32 b) 

ox, = oyz = 0 - E oxy - -€ 
1 + v Xy’ 
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EXAMPLE 3.1 
Flat Plate Bent 

Around a Circular 
Cylinder 

Solution 

Substitution of Eqs. 3.30 into Eq. 3.21 yields the strain-energy density U, in terms 
of stress quantities. Thus, we obtain 

1 2  2 2 u, = - [Oxx+d + d z z - 2 V ( 0  d +dxxdzz+d d ) 2E YY xx YY YY zz 

(3.33) 2 2 2  
+ 2(1  + V ) ( d X Y  + cxxz + oyz)l 

1 2  = -[Z, - 2(  1 + V ) Z 2 ]  
2E 

If the (x, y, z )  axes are directed along the principal axes of strain, then eq = E,, = 
cYz = 0. Hence, by Eq. 3.32, oq = ox- = oyz = 0. Therefore, the (x, y, z )  axes must also lie 
along the principal axes of stress. Consequently, for an isotropic material, the principal 
axes of stress are coincident with the principal axes of strain. When we deal with isotropic 
materials, no distinction need be made between principal axes of stress and principal axes 
of strain. Such axes are called simply principal axes. 

A flat rectangular plate lies in the (x, y) plane (Figure E3. la). The plate, of uniform thickness h = 2.00 
mm, is bent around a circular cylinder (Figure E3. lb) with the y axis parallel to the axis of the cylin- 
der. The plate is made of an isotropic aluminum alloy (E = 72.0 GPa and v = 0.33). The radius of the 
cylinder is 600 mm. 

(a) Assuming that plane sections for the undeformed plate remain plane after deformation, determine 
the maximum circumferential stress a e ~ ~ ~ ~ )  in the plate for linearly elastic behavior. 

(b) The reciprocal of the radius of curvature R for a beam subject to pure bending is the curvature 
K =  1/R = M/EZ. For the plate, derive a formula for the curvature K = 1/R in terms of the applied 
moment M per unit width. 

Y I  a 600 m m  a 600 m m  

(a ) 

FIGURE E3.1 

R =  
601 mm 

(4 

(a) We assume that the middle surface of the plate remains unstressed and that the stress through the 
thickness is negligible. Hence, the flexure formula is valid for the bending of the plate. Therefore, 
oee= 0, = 0 for the middle surface and 0, = 0 throughout the plate thickness h. Equations 3.30 
yield the results err = = 0 in the middle surface of the plate. Since the length of the plate in 
they direction is large compared to the thickness h, the plate deforms approximately under conditions 
of plane strain; that is, eYy = 0 throughout the plate thickness. Equations 3.30 give 

= 

1 V 

E YY E 
E y y  = 0 = -0 --Gee 

throughout the plate thickness. Thus, for plane strain relative to the (r,  0) plane 

OYy = vOee 
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EXAMPLE 3.2 
The Simple 

Tension Test 

With Eqs. 3.30, Eq. (a) yields 

The relation between the radius of curvature R of the deformed plate and ~ e e  may be determined by 
the geometry of deformation of a plate segment (Figure E3.k) .  By similar triangles, we find from 
Figure E 3 . k  that 

or 
h - 

Eee(max) - 
Equations (b) and (c) yield the result 

(b) In plate problems, it is convenient to consider a unit width of the plate (in they direction) and let 
M be the moment per unit width. The moment of inertia for this unit width is I = bh3/12 = h3/12. 
Since oee(max) = M(h/2)/1, this relation may be used with Eq. (d) to give 

where 
Eh3 

2 

is called theflexure rigidity of the plate. (See Chapter 13.) 

D =  
1 2 ( 1 - v  ) 

In Section 1.3, the axial tension test and its role in the determination of material properties were dis- 
cussed. The axial tension test in the linear elastic range of stress-strain may be used to interpret the 
Lam6 coefficients A and G .  For example, consider a prismatic bar subjected to the following state of 
stress relative to the (x, y, z )  axes, with the z axis directed along the longitudinal axis of the bar: 

For this state of stress to exist, the stresses on the lateral surface of the bar must be zero. On the ends 
of the bar, the normal stress is cr and the shear stress is zero. In other words, the state of stress in the 
bar is one of simple tension. 

= eXz = ey, = 0. Solving these equations for the 
strain components, we obtain 

Equations 3.28 yield k + ~ G E ,  = k + 2Geyy = 

- a0 (a + G I G  
= - [ 2 G ( 3 2 + 2 G ) J ’  Ezz = [ G ( 3 2 + 2 G ) J  

It follows from Eqs. (b) that 

where the quantities 

G(3A + 2G)  a 
( A + G )  ’ = [ 2 ( A + G ) 1  

E =  
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EXAMPLE 3.3 
The Pure Shear 

Test and the 
Shear Modulus 

are Young’s modulus of elasticity and Poisson‘s ratio, respectively. In terms of E and v, Eq. (b) 
becomes 

- V O  O 
Exx = E y y  - -E’ Ezz = 

Solving Eqs. (d) for the Lam6 coefficients a and G, in terms of E and v, we obtain 

E G =  VE a =  
[(l  + v)(l-2v)]’ + v)l 

The Lam6 coefficient G is also called the shear modulus of elasticity. It may be given a direct physical 
interpretation (see Example 3.3). The Lam6 coefficient A has no direct physical interpretation. How- 
ever, if the first of Eqs. 3.32 is written in the form 

E(1-V) VE 
O x ,  = ( 1 + v)( 1 - 2 v p x  + ( 1 + v) ( 1 - 2 v) ( f y y  + Ez,) 

the coefficient E(l - v)/[(l + v)(l - 2v)] can be called the axial modulus, since it relates the axial 
strain component en to its associated axial stress 0,. 

Similarly, the Lam6 coefficient 1 = vE/[(l + v)(l - 2v)l may be called the transverse modulus, 
since it relates the strain components eYy and E,, (which act transversely to o,) to the axial stress 0,. 
The second and third equations of Eqs. 3.32 may be written in a form similar to Eq. (g), with the 
same interpretation. 

The pure shear test may be characterized by the stress state O, = oYy = o,, = o = ox, = 0 and (T = 
-\y Y Z  

z= constant. For this state of stress, Eqs. 3.28 yield the strain components 

where yis used to represent engineering shear strain because of its convenient geometric interpreta- 
tion (see Eq. 2.73). These formulas show that a rectangular parallelepiped ABCD (Figure E3.3) 
whose faces are parallel to the coordinate planes is sheared in the yz plane so that the right angle 
between the edges of the parallelepiped parallel to the y and z axes decreases by the amount yyz. 
For this reason, the coefficient G is called the shear modulus of elasticity. A pure shear state of stress 
can be obtained quite accurately by the torsion of a hollow circular cylinder with thin walls (see 
Chapter 6). 

FIGURE E3.3 
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EXAMPLE 3.4 
Elimination of 

Friction Effect in 
the Uniaxial 

Compression Test 

In a uniaxial compression test, the effect of friction between the test specimen and the testing 
machine platens restrains the ends of the specimen from expanding freely in the lateral directions. 
This restraint may lead to erroneous measurement of the specimen strain. One way to eliminate this 
effect is to design the specimen and machine platens so that 1. the specimen and the end of the platens 
in contact with the specimen have the same cross sections and 2. a certain relation exists between the 
material properties of the specimen and the platens. 

To illustrate this point, let quantities associated with the specimen be denoted by subscript s and 
those associated with the platens be denoted by subscript p. Let  P be the load applied to the specimen 
through the end platens. Because the cross-sectional shapes of the specimen and the platens are the 
same, we denote the areas by A .  Let coordinate z be taken along the longitudinal axis of the specimen 
and coordinate x be perpendicular to axis z. Then, under a machine load P, the longitudinal strains in 
the specimen and platens are, respectively, 

The associated lateral strains are 
V P  V P  

( E X X ) $  = -v ( E  ) = -s E s A ,  ( E  ) =-v ( E  ) =-JL 
XX P p z z  P E p A  s 2 2  s 

If the lateral strains in the specimen and platens are equal, they will expand laterally the same 
amount, thus eliminating friction that might be induced by the tendency of the specimen to move lat- 
erally relative to the platens. By Eq. (b), the requirement for friction to be nonexistent is that = 
(E,)p, or 

In addition to identical cross sections of specimen and platens, the moduli of elasticity and Poisson's 
ratios must satisfy Eq. (c). To reduce or eliminate the effect of friction on the tests results, it is essen- 
tial to select the material properties of the platens to satisfy Eq. (c) as closely as possible. 

3.4 EQUATIONS OF THERMOELASTICITY 
FOR ISOTROPIC MATERIALS 

Consider an unconstrained member made of an isotropic elastic material in an arbitrary 
zero configuration. Let the uniform temperature of the member be increased by a small 
amount AT. Experimental observation has shown that, for a homogeneous and isotropic 
material, all infinitesimal line elements in the volume undergo equal expansions. Further- 
more, all line elements maintain their initial directions. Therefore, the strain components 
resulting from the temperature change AT are, with respect to rectangular Cartesian coor- 
dinates (x,  y, z) ,  

where a denotes the coefficient of thermal expansion of the material. 
Now let the member be subjected to forces that induce stresses o,, oyy, . . . , oyz at 

point 0 in the member. Accordingly, if E ~ ,  eYy, . . . , eYz denote the strain components at 
point 0 after the application of the forces, the change in strain produced by the forces is 
represented by the equations 

(3.35) 
E : ~  = eXx - a AT, eGY = eYy - a AT, = E,, - a AT 
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In general, AT may depend on the location of point 0 and time t. Hence AT = AT (x, y, z,  t). 
Substitution of Eq. 3.35 into Eqs. 3.28 yields 

oxx = i le + ~GE,,  - CAT, 

ozz = i le + 2GeZZ - CAT 

oXy = ~GE,,, ox, = 2Gex,, oYz = 2Gcy, 

oYy = i le + ~GE, ,  - CAT 

(3.36) 

where 

Similarly, substitution of Eqs. 3.36 into Eqs. 3.30 yields 

(3.37) 

(3.38) 

Finally, substituting Eqs. 3.38 into Eqs. 3.26 or 3.27, we find that 

(3.39) 3 2 i l + G  I - 2 G i 2 - c i 1  A T + - c a ( A T )  u, = (; )-: 2 

In terms of the strain components (see Eqs. 2.78), we obtain 

1 2 2 2 2  2 2 2 

2 YY XY (3.40) 
u, = -a(Exx + + Ez,)  + G ( E , ~  + E y y  + Ezz  + 2E + 2Exz + 2Eyz) 

3 2 

2 
- C( eXx + gYy + eZZ)AT + - c a ( A T )  

Equations 3.36 and 3.38 are the basic stress-strain relations of classical thermoelas- 
ticity for isotropic materials. For temperature changes AT, the strain-energy density is 
modified by a temperature-dependent term that is proportional to the volumetric strain e = 
T1 = E, + erY + eZz and by a term proportional to (AT)2 (Eqs. 3.39 and 3.40). 

We find by Eqs. 3.38 and 3.40 

2E 
and 

2 2 2  

’ 1  2 2  
+ 2(1 + waxy + ox, + oyz> 

(3.41) 

(3.42) 

in terms of stress components. Equation 3.42 does not contain AT explicitly. However, the 
temperature distribution may affect the stresses. Note that Eqs. 3.41 and 3.42 are identical 
to the results in Eq. 3.33. 
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‘11 ‘12 ‘13 ‘14 

‘12 ‘22 ‘23 ‘24 

‘13 ‘23 ‘33 ‘34 

‘14 ‘24 ‘34 ‘44 
0 0 0 0 ‘55 ‘56 

0 0 0 0 ’ ‘56 ‘66 
- 

3.5 HOOKE’S LAW ORTHOTROPIC MATERIALS 

An important class of materials, called orthotropic materials, is discussed in this section. 
Materials such as wood, laminated plastics, cold rolled steels, reinforced concrete, various 
composite materials, and even forgings can be treated as orthotropic. Orthotropic materi- 
als possess three orthogonal planes of material symmetry and three corresponding orthog- 
onal axes called the orthotropic axes. In some materials, for example, forged materials, 
these axes may vary from point to point. In other materials, for example, fiber-reinforced 
plastics and concrete reinforced with steel bars, the orthotropic directions remain constant 
as long as the fibers and steel reinforcing bars maintain constant directions. In any case, 
for an elastic orthotropic material, the elastic coefficients Cij (Eq. 3.20) remain unchanged 
at a point under a rotation of 180” about any of the orthotropic axes. 

Let the (x,  y, z )  axes denote the orthotropic axes for an orthotropic material and let 
the (x,  y) plane be a plane of material symmetry. Then, under the coordinate transforma- 
tion x + x, y + y, and z + - z ,  called a reflection with respect to the (x ,  y) plane, the elas- 
tic coefficients Cij remain invariant. The direction cosines for this transformation (see 
Table 2.2) are defined by 

1, = rn2 = 1, n3 = -1, 1, = 1, = rnl = rn3 = n l  = n2 = 0 (3.43) 

Substitution of Eqs. 3.43 into Eqs. 2.15, 2.17, and 2.76 reveals that, for a reflection with 
respect to the (x, y) plane, 

on = o,, oyy = oyy, 0.z = ozz, o x y  = 0-, oxz = - a,,, o y z  = -oyz (3.44) 

and 

Exx = E X x  E W  = Eyy. Ezz = EZZ’ ”/xu = Y-9 ”/xz = - YKZ? rYz = - Yyz (3.45) 

Since the Cij are constant under the transformation of Eq. 3.43, the first of Eqs. 3.20 yields 

= ‘1 lEXX 4- c12EYY ‘13€ZZ ‘14fiY + ‘15%Z ‘16YyZ (3.46) 

Substitution of Eqs. 3.44 and 3.45 into Eq. 3.46 yields 

%= %X=c11E.xx+c12Eyy +c13Ezz c14Y~-c15~z-c16’&z (3.47) 

Comparison of the first of Eqs. 3.20 with Eq. 3.47 yields the conditions CIS = -C1s and 
‘16 = 4 1 6 ,  or ‘15 = ‘16 = 0. Similarly, considering o ,  ozz, OXF OXZ, and OYZ, we find 
that ‘25 = ‘26 = C35 = c 3 6  = ‘45 = ‘46 = 0. Thus, the coefficients for a material whose 
elastic properties are invariant under a reflection with respect to the (x,  y) plane (i.e., for a 
material that possesses a plane of elasticity symmetry) are summarized by the matrix 

(3.48) 
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A general orthotropic material has two additional planes of elastic material symmetry, in 
this case, the (x, z) and (y, z) planes. Consider the (x,  z) plane. Let x + x, y + -y, z + z. 
Then, proceeding as before, noting that 11 = n 3  = 1, m 2  = -1, and 12 = l3 = ml = m3 = n1 = 
n2 = 0, we find ‘14 = C24 = C34 = ‘56 = 0. Then, the matrix of Eq. 3.48 reduces to 

‘I1 ‘12  ‘ I 3  

‘ 1 2  ‘22  ‘23  

‘13  ‘23  ‘33 

0 0 o c , o  0 

0 0 o o c , , o  
0 0 0 0 0 ‘ 6  

(3.49) 

A reflection with respect to the (y, z) plane does not result in further reduction in the num- 
ber of elastic coefficients Cij 

The matrix of coefficients in Eq. 3.49 contains nine elastic coefficients. Conse- 
quently, the stress-strain relations for the most general orthotropic material contain nine 
independent elastic coefficients relative to the orthotropic axes (x, y,  z). Equations 3.20 are 
simplified accordingly. It should be noted, however, that this simplification occurs only 
when the orthotropic axes are used as the coordinate axes for which the Cij are defined. 
The resulting equations are 

O n  = ‘ I l E x x  + ‘12€yy ‘13€zz 

Oyy = c12Exx + ‘22€yy + ‘ 2 3 % ~  

*zz = c13En + ‘23€yy + ‘33€zz 

-iy = ‘44Yq 

*xz = ‘55Yxz 

*yz = ‘66’&z 

The stress-strain relations for orthotropic materials in terms of orthotropic moduli of elas- 
ticity and orthotropic Poisson’s ratios may be written in the form 

(3.50) 

(3.51) 
1 - 

Yxy  - --xy 

Yxz  = --xz 

Yyz  - --yz 

GxY 

G x z  

G Y Z  

1 

1 - 
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EXAMPLE 3.5 
Stress-Strain 
Relations for 
Orthotropic 

Materials: The 
Plane Stress Case 

where Ex, Ey, Ez denote the orthotropic moduli of elasticity and Gxy, G,, , Gyz denote the ortho- 
tropic shear moduli for shear deformation in the x-y, x-z, and y-z planes, respectively. The 
term vxy is a Poisson ratio that characterizes the strain in the y direction produced by the stress 
in the x direction, with similar interpretations for the other Poisson ratios, vyx, vzx, vxz, vyz ,  
and vzy.. For example, by Eq. 3.5 1, for a tension specimen of orthotropic material subjected to 
a unimal stress o,, = o, the axial strain is eZz = o/E, and the laterial strains are ex. = -vZxo/Ez 
and eYr = -vzyo/Ez. (See Example 3.2 for the analogous isotropic tension test.) 

Because of the symmetry of the coefficients in the stress-strain relations, we have 
by Eqs. 3.51 the identities 

V vyx vxz - vzx v y z  = vzy , - - -  x y = -  
Ex E, Ex E,' E,  

(3.52) 

A wood panel with orthotropic axes (x, y ,  z )  is subjected to a plane stress state relative to its face in 
the (x ,  y )  plane. Let a rectangular region in the body be subjected to extensional stress om (Figure 
E3.5a). By Eq. 3.51, the strain components are 

o x x  
Exx = - 

E X  

"xy o x x  
EYY = -VxyExx = - - 

EX 

where vxy and v,, are orthotropic Poisson ratios. 

Contraction 

Extension 

0 Deformed shape 

-1 
-] Undeformed shape 

Orthotropic 
material axes 

FIGURE E3.5 Orthotropic material. (a)  Applied stress oxx. (b)  Applied stress uyr (c) Applied 
stress oxy. 
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Consider next the case where the rectangular region is subjected to an extensional stress oyy (Fig- 
ure E3.5b). By Eqs. 3.51, the strain components are 

- OYY 
f Y  - - 

E Y  

- vYx'YY Exx = -v E - -- 
E Y  

VY z o y  y 
€ 2 ,  = -v t2 = -- 

E Y  

YX YY 

YZ YY 

where vyx and vyz are orthotropic Poisson ratios. 
For a combination of stresses (on, oyy), the addition of Eqs. (a) and (b) yields 

o x ,  - v y x o y y  

Ex E y  

E =--+- V x y %  o y y  

E x  E y  

v x z o x x  v y z o y y  

E x  E y  

EXX = - - 

YY 

€2 ,  = - -- - 

Solving the first two of Eqs. (c) for (om, oyy) in terms of the in-plane strains (en, eYy), we obtain 

EX 

E Y  

1 - v x y v y x  
OYY = 

o x y  = G x y Y x y  (el 

(Exx + V y x E y y )  

( V x y E x x  + E y y )  

(d) 

Finally, consider the element subjected to shear stress oxy (Figure E3.5~). By Eqs. 3.51, we have 

where Gxy is the orthotropic shear modulus in the (x, y) plane and y, is the engineering shear strain in 
the (x, y) plane. Thus, for the orthotropic material in a state of plane stress, we have the stress-strain 
relations [by Eqs. (d) and (e)l 

EX 
o x ,  = ( E x ,  + V y x E y )  

1 - v x y v y x  

( V x y %  + E y y )  
E Y  

1 - v x y v y x  OYY = 

I O x y  = G x y Y x y  

I .  With these stress-strain relations, the theory for plane stress orthotropic problems of wood panels fol- 1 lows in the same manner as for plane stress problems for isotropic materials. 

(D 
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EXAMPLE 3.6 
Stress-Strain 
Relations of a 

Fiber-Resin 
Lamina 

Solution 

A lamina (a thin plate, sheet, or layer of material) of a section of an airplane wing is composed of uni- 
directional fibers and a resin matrix that bonds the fibers. Let the volume fraction (the proportion of 
fiber volume to the total volume of the composite) bef Determine the effective linear stress-strain 
relations of the lamina. 

(a ) (b) 

FIGURE E3.6 Lamina: fiber volume fraction = f, resin volume fraction = 1 - f. 

Let the modulus of elasticity and the Poisson ratio of the fibers be denoted EF and VF, respectively, 
and the modulus of elasticity and the Poisson ratio of the resin be ER and VR. Since the lamina is thin, 
the effective state of stress in the lamina is approximately one of plane stress in the x-y plane of the 
lamina (see Figure E 3 . 6 ~ ) .  Hence, the stress-strain relations for the fibers and the resin are 

where (CT,F, Gyy~), (0,~. uyy~), (e,~, eYy~) ,  and (E,R, eyy~)  denote stress and strain components in 
the fiber (F) and resin (R), respectively. 

Since the fibers and resin are bonded, the effective lamina strain ex (Figure E 3 . 6 ~ )  is the same as 
that in the fibers and in the resin; that is, in the x direction, 

‘ X X  = ‘xxF = ‘xxR 

In the y direction, the effective lamina strain eYy is proportional to the amount of fiber per unit length 
in the y direction and the amount of resin per unit length in they direction. Hence, 

(b) 

Eyy =fEyyF (1 --f)€yyR (c) 

Also, by equilibrium of the lamina in the x direction, the effective lamina stress 0, is 

0, = f D , F  + (1 - f ) G x R  

In the y direction, the effective lamina stress oyy is the same as in the fibers and in the resin, that is, 

( 4  

Oyy = OyyF = OyyR ( 4  

Solving Eqs. (a) through (e) for e, and eYy in terms of u, and uyy, we obtain the effective stress- 
strain relations for the lamina as 
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EXAMPLE 3.7 
Composite Thin- 

Wall Cylinder 
Subjected to 
Pressure and 
Temperature 

Increase 

where 

E = fEF+( l - f )ER 

To determine the shear stress-strain relation, we apply a shear stress o, to a rectangular element of 
the lamina (Figure E3.6b), and we calculate the angle change y, of the rectangle. By Figure E3.6b, 
the relative displacement b of the top of the element is 

b =fyF (1 - f b R  (h) 

where % and are the angle changes attributed to the fibers and the resin, respectively; that is, 

and GF and GR are the shear moduli of elasticity of the fiber and resin, respectively. Hence, the 
change y, in angle of the element (the shear strain) is, with Eqs. (h) and (i), 

By Eq. o), the shear stress-strain relation is 

0, = G y, = 2G€, 

where 

Thus, by Eqs. (f), (g), (k), and (l), we obtain the stress-strain relations of the lamina, in the form of 
Eqs. 3.50, as 

where 
V E  P E 2 ,  c,, = - 

2 c,, = - 
P -  v P - v  

E c,, = 2’ c,, = G 
P -  v 

Consider a composite cylinder of length L formed from an inner cylinder of aluminum with outer 
radius R and thickness tA and an outer cylinder of steel with inner radius R and thickness ts (Figure 
E3.7a); tA << R and tS << R. The composite cylinder is supported snugly in an upright, unstressed 
state between rigid supports. An inner pressure p is applied to the cylinder (Figure E3.7b), and the 
entire assembly is subjected to a uniform temperature change AT. Determine the stresses in both the 
aluminum and the steel cylinders for the case tA = t S  = t = 0.02R. For aluminum, EA = 69 GPa, VA = 
0.333, and CXA = 21.6 x 104/”C. For steel, E s  = 207 GPa, VS = 0.280, and C X ~  = 10.8 x 104/”C. 
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Solution 

B 

FIGURE E3.7 (a )  Composite cylinder. (b)  Cross section A-A. (c) Longitudinal section 6-B. 
(d) Cylinder element. 

Since both cylinders are thin, we may assume that the stresses in the tangential direction 0, oeA and 
oBS in the aluminum and steel, respectively, are constant through the thicknesses tA and ts (Figure 
E3.7~). Also, it is sufficiently accurate to use the approximation R - t = R.  From the free-body dia- 
gram of Figure E3.7c, we have & = 2pRL - 2oeStL - 2oeAtL = 0. Hence, 

Since ordinarily the radial stress or in the cylinder is very small (of the order p) compared with both 
the tangential stress 0, and the longitudinal stress oL, we assume that or is negligible. Therefore, the 
cylinder is subjected approximately to a state of plane stress (o,, 08) (Figure E3.74. Hence, for 
plane stress, the stress-strain-temperature relations for each cylinder are 

EEL = 0,- VO,+ E a ( A T )  

E E ,  = 0,- voL + E a ( A T )  

Equations (b) hold for all points in the cylinder, provided that the ends are free to expand radially. The 
cylinder is restrained from expanding longitudinally, since the end walls are rigid. Then, eL = 0. Also, 
at radial distance R (the interface between the aluminum and the steel sleeves), the radial displace- 
ment is u and the tangential strain is €0 = [2w(R + u)  - 2nR]/2nR = u/R. Assuming that t is so small 
that this strain is the same throughout the aluminum and the steel sleeves, we have by Eqs. (b) 

(b) 

Also, from the given data, 3EA = Es and a, = 2%. Therefore, with Eqs. (a) and (c), we may write 

1 50 2 
3 3 3  

oLA + -oBs - - p  + - E s a s ( A T )  = 0 

oLs - 0.280,~ + E s a s ( A T )  = 0 

3(50p - oBs) - oLA + 2 E s a s ( A T )  = oBS - 0 . 2 8 0 , ~  + E s a s ( A T )  = 0 
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EXAMPLE 3.8 
Douglas Fii 

S tress-Strain 
Relations 

Solution 

By the first two of Eqs. (d) and with Esas = 2.236 MPa/"C, we find that 

50 1 
3 

oLA = - p  - 1.491(AT) - goes 

oLS = 0.280,s - 2.236(AT) 

Substitution of Eqs. (e) into the last of Eqs. (d) yields for the tangential stress in the steel cylinder 

06 = 37.16~ + 0.8639(AT) (f) 

By Eqs. (a) and (f), we find the tangential stress in the aluminum cylinder to be 

oeA = 50p - 37.16~ - 0.8639(AT) = 12.84~ - 0.8639(AT) 

and by Eqs. (e) and (0, we find the longitudinal stresses in the aluminum and steel cylinders, respectively, 

OLA = 4 . 2 8 ~  - 1.779(AT) 
OLS = 10.40~ - 1.994(AT) 

Thus, forp = 689.4 kpa and AT = 100°C 

OeA = -77.4 MPa, OLA = -175 m a  

om = 1 12 MPa, oLs = -192 MPa I 
Wood is generally considered to be an orthotropic material. For example, the elastic constants for 
Douglas fir (FPS, 1999), relative to material axes (x, y, z), are 

Ex = 14,700 MPa, Ey = lo00 MPa, E, = 735 MPa 

Gv = 941 MPa, Gxz = 1147 MPa, G,, = 103 MPa (a) 

vv = 0.292, v,, = 0.449, vYz = 0.390 

where the x axis is longitudinal (parallel to the grain), they axis is radial (across the grain), and the z 
axis is tangent to the growth rings (across the grain). 

At a point in a Douglas fir timber, the nonzero components of stress are 

on = 7 MPa, oyy = 2.1 MPa, o, = -2.8 MPa, oxr = 1.4 MPa (b) 

(a) Determine the orientation of the principal axes of stress. 

(b) Determine the strain components. 

(c) Determine the orientation of the principal axes of strain. 

(a) Since oxz = oyz = 0, the z axis is a principal axis of stress and o, = -2.8 MPa is a principal stress. 
Therefore, the orientation of the principal axes in the (x, y) plane is given by Eq. 2.36, which is 

i u2 = 1.73 MPa 

tan28 = 2oxy = 0.5714 
(oxx- oyy)  

e2 : 
\ 

E ,  = 3255 x y I  I 
= 74.78" 

(a)  (b) 

FIGURE E3.8 (a) Principal stress axes. (b)  Principal strain axes. 
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1 Equation (c) yields 8 = 14.9' or 8 = 104.9". The maximum principal stress is O, = 7.37 Mpa and OCCU~S in 
1 the direction 8 = 14.9', and the intermediate principal stress 02 = 1.73 MPa occurs in the direction 8 = 

104.9' (see Figure E3.8~). As mentioned above, the minimum principal stress is o3 = oZ2 = -2.8 MPa. ' (b) With the material constants in Eq. (a), we can write the stress-strain relations using Eqs. 3.51 and 
3.52: 

lo6 x 6, = 68.00, - 19 .90~~  - 30.60,~ 

lo6 x eYy = - 19.90, + 1 0 0 0 0 ~ ~  - 3900,~ 

lo6 x eZz = - 30.60, - 3900, + 13610, 

lo6 x y, = 10630, 

lo6 x yXz = 8 7 2 0 ~ ~  

lo6 x 6, = 97100,~ 

Now with the stresses in Eq. (b), we can find the strains from Eq. (d) as 

E, = 520 x lod, 

y, = 1488 x lod, K~ = 0, r , = O  

eYy = 3053 x lod, eZz = -4844 x lod (el 

(c) Since x2 = yyz = 0, the z axis is a principal axis of strain. The orientation of the principal axes of 
strain in the (x, y) plane is given by 

tan28 = yxy = -0.5875 (f) 
(cxx - E y y )  

Hence, 8= -15.22" or €J= 74.78". The maximum principal strain is €1 = 3255 x lod and occurs in the 
direction 8 = 74.78", and the intermediate principal strain €2 = 317.6 x lo4 occurs in the direction 
8 = -15.22" (see Figure E3.8b). The minimum principal strain is €3 = 4 8 4 4  x lod, which is oriented 
along the z axis. Thus, the principal axes of stress and strain do not coincide, as they do for an isotro- 
pic material. 

PROBLEMS 

The problems for Chapter 3 generally require the use of 
stress-strain relations to determine principal stress, prin- 
cipal strains, maximum shear stresses, and directional 

strains. These quantities play important roles in failure 
theories and design specifications. 

Sections 3.1-3.4 

3.1. Table P3.1 lists principal strains that have been calculated 
for several points in a test of a machine part made of AISI-3 140 
steel (see Table A.l). Determine the corresponding principal 
stresses. 

TABLE P3.1 

3.2. A wing of an airplane is subjected to a test in bending, and 
the principal strains are measured at several points on the wing 
surface (see Table P3.2). The wing material is aluminum alloy 
7075 T6 (see Table A.l). Determine the corresponding princi- 
pal stresses and the third principal strain. 

TABLE P3.2 
Strain Point 1 Point2 Point3 Point4 Point5 

'1 0.008 0.006 -0.007 0.004 0.009 
~ Strain Point 1 Point2 Point3 Point 4 Point5 

€2 -0.002 -0.003 -0.008 -0.005 0.002 €1 -0.004 0.008 0.006 -0.005 0.002 
€3 0 0 0 0 0 €2 -0.006 0.002 0.002 -0.008 -0.002 
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3.3. A square plate in the side of a ship with 800-mm sides par- 
allel to the x and y axes has a uniform thickness h = 10 mm and 
is made of an isotropic steel (E = 200 GPa and v = 0.29). The 
plate is subjected to a uniform state of stress. If o,, = o, = 
oZy = 0 (plane stress), o, = ol = 500 MPa, and eYy = 0 for the 
plate, determine oyy = 02 and the final dimensions of the plate, 
assuming linearly elastic conditions. 
3.4. The ship's plate in Problem 3.3 is subjected to plane strain 
(ezz = ezx = eZy = 0). If o, = o1 = 500 MPa and e, = 2eYy, 
determine the magnitude of oyy = 02 and ozz = 03, assuming 
linearly elastic conditions. 
3.5. For an isotropic elastic medium subjected to a hydrostatic 
state of stress, o, = oyy = o,, = -p and oq = ox, = or, = 0, 
where p denotes pressure [FL2]. Show that for this state of 
stress p = -Ke, where K = E/[3( 1 - 2v)l is the bulk modulus and 
e = e, + eyy + ezz is the classical small-displacement cubical 
strain (also called the volumetric strain). 
3.6. A triaxial state of principal stress acts on the faces of a unit 
cube of soil. Show that these stresses will not produce a volume 
change if v = 0.5. Assume soil is a linearly elastic isotropic 
material. If v # 0.5, show that the condition necessary for the 
volume to remain unchanged is for o1 + o2 + o3 = 0. 
3.7. An airplane wing is made of an isotropic linearly elastic 
aluminum alloy (E = 72.0 GPa and v = 0.33). Consider a point 
in the free surface of the wing that is tangent to the (x, y) plane. 
If o, = 250 MPa, oyy = -50 MPa, and oV = -150 MPa, deter- 
mine the directions for strain gages at that point to measure two 
of the principal strains. What are the magnitudes of these prin- 
cipal strains? 
3.8. A bearing made of isotropic bronze (E = 82.6 GPa and 
v = 0.35) is subjected to a state of plane strain (ez, = eZx = 
eZy = 0). Determine ozz, e,,, eYy, and y,, if o,, = 90 MPa, 
oyy = -50 MPa, and oxy = 70 MPa. 
3.9. Solve Problem 3.3 for the condition that 6, = 2eYy. 
3.10. A rectangular rosette (Figure 2.20b), is cemented to the 
free surface of an airplane wing made of an aluminum alloy 
7075 T6 (see Appendix A). Under load, the strain readings are 

a. Determine the principal stresses. Note that the stress compo- 
nents on the free surface are zero. 
b. Show the orientation of the volume element on which the 
principal stresses in the plane of the rosette act. 
c. Determine the maximum shear stress z , ~  
d. Show the orientation of the volume element on which z,,, 
acts. 
3.11. The nonzero stress components at a point in a steel plate 
(E = 200 GPa and v = 0.29) are o, = 80 MPa, oyy = 120 MPa, 
and oxy = 50 MPa. Determine the principal strains. 
3.12. Determine the extensional strain in Problem 3.11 in a 
direction 30" clockwise from the x axis. 

e, = e, = 0.00250, eb = 0.00140, ec = eyy = -0.00125. 

3.13. A steel plate (E = 200 GPa and v = 0.29) is subjected to a 
state of plane stress (on = -80 MPa, oyy = 100 MPa, and o = 
50 MPa). Determine the principal stresses and principal strams. 
3.14. In Problem 3.13, determine the extensional strain in a 
direction 20" counterclockwise from the x axis. 
3.15. An airplane wing spar (Figure P3.15) is made of an alumi- 
num alloy (E = 72 GPa and v = 0.33), and it has a square cross 
section perpendicular to the plane of the figure. Stress compo- 
nents o, and oyy are uniformly distributed as shown. 

7y 

4 t t t t t t U " Y  t t t t t ,  
I a,,=200MPa 

t I 
h = 2 0 m m  

a. If o, = 200 MPa, determine the magnitude of oyy so that the 
dimension b = 20 mm does not change under the load. 
b. Determine the amount by which the dimension a changes. 
c. Determine the change in the cross-sectional area of the spar. 
3.16. Solve Example 3.7 for the case where p = 689.4 kPa is 
applied externally and AT = 100°C is a decrease in temperature. 
Discuss the results. 
3.17. A rectangular rosette strain gage (Figure 2.20b) is 
cemented to the free surface of a machine part made of class 
30, gray cast iron (Table A. 1). In a test of the part, the following 
strains were recorded: E, = 0.00080, eb = 0.00010, and ec = 
0.00040. Determine the stress components at the point on the 
surface with respect to the x-y axis shown. 
3.18. The nonzero strain components at a critical point in an 
aluminum spar of an airplane (E = 72 GPa and v = 0.33) are 
measured on a free surface as en = 0.0020, eYy = 0.0010, and 

a. Determine the corresponding nonzero stress components. 
b. A design criterion for the spar is that the maximum shear 
stress cannot exceed z,, = 70 MPa. Is this condition satisfied 
for the measured strain state? 
3.19. On the free surface of a bearing made of commercial 
bronze (half-hard see Table A.l), the principal strains are 
determined to be = 0.0015 and ez = 0.0005. A design crite- 
rion for the bearing is that the maximum tensile stress not 
exceed 200 MPa. Is this criterion satisfied for the given strain 
state? 

EV = 0.0010. 
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Section 3.5 

3.20. The lamina of Example 3.6 is composed of glass fibers 
and an epoxy resin. The fibers have a modulus of elasticity EF = 
72.4 GPa, a shear modulus GF = 27.8 GPa, and a Poisson ratio 
vF = 0.30. The resin has a modulus of elasticity ER = 3.50 GPa, 
a shear modulus C, = 1.35 GPa, and a Poisson ratio VR = 0.30. 
The volume fraction of fibers is f = 0.70. 
a. Determine the coefficients Cii of the lamina stress-strain 
relations [see Eqs. (m) and (n) of Example 3.61. 
b. For a given load, the measured strain components were 
found to be 

E ,  = 500p, eYy = 350p, r, = 1 0 0 0 ~  
Determine the principal stresses and the orientation of the prin- 
cipal axes of stress. 
3.21. A member whose material properties remain unchanged 
(invariant) under rotations of 90" about axes (x, y ,  z) is called a 
cubic material relative to axes (x, y ,  z) and has three indepen- 
dent elastic coefficients (C1, C2, C3). Its stress-strain relations 
relative to axes (x, y, z) are (a special case of Eq. 3.50) 

0, = CIE, + C2EYY + C2tZ, 

0 y y  = c2%x + ClEyy + C2% 

0 2 ,  = C2% + C2Eyy + Cl%Z 

0, = c3r, 

0 y z  = c35, 
= '3%2 
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Although in practice aluminum is often assumed to be an iso- 
tropic material (E = 72 GPa and v = 0.33), it is actually a cubic 
material with C1 = 103 GPa, C2 = 55 GPa, and C3 = 27.6 GPa. 
At a point in an airplane wing, the strain components are E, = 
0.0003, eYy = 0.0002, E,, = 0.0001, E, = O.ooOo5, and ex, = 

a. Determine the orientation of the principal axes of strain. 
b. Determine the stress components. 
c. Determine the orientation of the principal axes of stress. 
d. Calculate the stress components and determine the orienta- 
tion of the principal axes of strain and stress under the assump- 
tion that the aluminum is isotropic. 
3.22. A birch wood log has the following elastic constants 
(FPS, 1999) relative to orthotropic axes (x, y,  z): 

Eyz = 0. 

Ex = 15,290 MPa, Ey = 1195 MPa, E, = 765 MPa 
Gxz = 1040 MPa, Gyz = 260 MPa G, = 1130 MPa, 

V, = 0.426, vxz = 0.45 1, vyz = 0.697 
where the x axis is longitudinal to the grain, the y axis is radial 
in the tree, and the z axis is tangent to the growth rings of 
the tree. The unit of stress is [MPa]. At a point in a birch log, 
the components of stress are 0, = 7 MPa, aYy = 2.1 MPa, o,, = 
-2.8 MPa, 0, = 1.4 MPa, and ox, = oyz = 0. 
a. Determine the orientation of the principal axes of stress. 
b. Determine the strain components. 
c. Determine the orientation of the principal axes of strain. 
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